Author:
Siew Melissa L.,Wallace Megan J.,Kitchen Marcus J.,Lewis Robert A.,Fouras Andreas,te Pas Arjan B.,Yagi Naoto,Uesugi Kentaro,Siu Karen K. W.,Hooper Stuart B.
Abstract
At birth, the initiation of pulmonary gas exchange is dependent on air entry into the lungs, and recent evidence indicates that pressures generated by inspiration may be involved. We have used simultaneous plethysmography and phase-contrast X-ray imaging to investigate the contribution of inspiration and expiratory braking maneuvers (EBMs) to lung aeration and the formation of a functional residual capacity (FRC) after birth. Near-term rabbit pups ( n = 26) were delivered by cesarean section, placed in a water plethysmograph, and imaged during the initiation of spontaneous breathing. Breath-by-breath changes in lung gas volumes were measured using plethysmography and visualized using phase-contrast X-ray imaging. Pups rapidly (1–5 breaths) generate a FRC (16.2 ± 1.2 ml/kg) by inhaling a greater volume than they expire (by 2.9 ± 0.4 ml·kg−1·breath−1 over the first 5 breaths). As a result, 94.8 ± 1.4% of lung aeration occurred during inspiration over multiple breaths. The incidence of EBMs was rare early during lung aeration, with most (>80%) occurring after >80% of max FRC was achieved. Although EBMs were associated with an overall increase in FRC, 34.8 ± 5.3% of EBMs were associated with a decrease in FRC. We conclude that lung aeration is predominantly achieved by inspiratory efforts and that EBMs help to maintain FRC following its formation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献