Low resting diffusion capacity, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease

Author:

Elbehairy Amany F.12ORCID,O'Donnell Conor D.1,Abd Elhameed Asmaa3,Vincent Sandra G.1,Milne Kathryn M.14,James Matthew D.1,Webb Katherine A.1,Neder J. Alberto1ORCID,O’Donnell Denis E.1ORCID,

Affiliation:

1. Department of Medicine and Queen’s University and Kingston Health Sciences Centre, Kingston, Ontario, Canada

2. Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt

3. Department of Biomedical Informatics and Medical Statistics, Medical Research Institute, Alexandria University, Alexandria, Egypt

4. Clinician Investigator Program, Department of Medicine, University of British Columbia, Vancouver, Canada

Abstract

The mechanisms linking reduced diffusing capacity of the lung for carbon monoxide (DlCO) to dyspnea and exercise intolerance across the chronic obstructive pulmonary disease (COPD) continuum are poorly understood. COPD progression generally involves both DlCO decline and worsening respiratory mechanics, and their relative contribution to dyspnea has not been determined. In a retrospective analysis of 300 COPD patients who completed symptom-limited incremental cardiopulmonary exercise tests, we tested the association between peak oxygen-uptake (V̇o2), DlCO, and other resting physiological measures. Then, we stratified the sample into tertiles of forced expiratory volume in 1 s (FEV1) and inspiratory capacity (IC) and compared dyspnea ratings, pulmonary gas exchange, and respiratory mechanics during exercise in groups with normal and low DlCO [i.e., <lower limit of normal (LLN)] using Global Lung Function Initiative reference values. DlCO was associated with peak V̇o2 ( P = 0.006), peak work-rate ( P = 0.005), and dyspnea/V̇o2 slope ( P < 0.001) after adjustment for other independent variables (airway obstruction and hyperinflation). Within FEV1 and IC tertiles, peak V̇o2 and work rate were lower ( P < 0.05) in low versus normal DlCO groups. Across all tertiles, low DlCO groups had higher dyspnea ratings, greater ventilatory inefficiency and arterial oxygen desaturation, and showed greater mechanical volume constraints at a lower ventilation during exercise than the normal DlCO group (all P < 0.05). After accounting for baseline resting respiratory mechanical abnormalities, DlCO<LLN was consistently associated with greater dyspnea and poorer exercise performance compared with preserved DlCO. The higher dyspnea ratings and earlier exercise termination in low DlCO groups were linked to significantly greater pulmonary gas exchange abnormalities, higher ventilatory demand, and associated accelerated dynamic mechanical constraints. NEW & NOTEWORTHY Our study demonstrated that chronic obstructive pulmonary disease patients with diffusing capacity of the lung for carbon monoxide (DlCO) less than the lower limit of normal had greater pulmonary gas exchange abnormalities, which resulted in higher ventilatory demand and greater dynamic mechanical constraints at lower ventilation during exercise. This, in turn, led to greater exertional dyspnea and exercise intolerance compared with patients with normal DlCO.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3