Exercise Induced Fluid Shifts are Distinct to Exercise Mode and Intensity - a Comparison of Blood Flow Restricted and Free Flow Resistance Exercise

Author:

Haddock Bryan Thomas1,Hansen Sofie Krarup2,Lindberg Ulrich3,Nielsen Jakob Lindberg4,Frandsen Ulrik5,Aagaard Per4,Larsson Henrik Bo Wiberg6,Suetta Charlotte7

Affiliation:

1. Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Denmark

2. Geriatric Research Unit, Geriatric Department, Bispebjerg Hospital, Denmark

3. Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Denmark

4. Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark

5. Department of Sport science and Clinical Biomechanics, University of Southern Denmark, Denmark

6. Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Denmark

7. Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Denmark

Abstract

Aim: MRI can provide fundamental tools in decoding physiological stressors stimulated by training paradigms. Acute physiological changes induced by three diverse exercise protocols known to elicit similar levels of muscle hypertrophy were evaluated using muscle functional magnetic resonance imaging (mfMRI). Methods: The study was a cross-over study with participants (n=10) performing three acute unilateral knee extensor exercise protocols to failure and a work matched control exercise protocol. Participants were scanned after each exercise protocol; 70% 1 repetition maximum (RM) (FF70); 20% 1RM (FF20); 20% 1RM with blood flow restriction (BFR20); free-flow (FF) control work matched to BFR20 (FF20WM). Post exercise mfMRI scans were used to obtain interleaved measures of muscle R2 (indicator of edema), R2' (indicator of deoxyhemoglobin), muscle cross sectional area (CSA) blood flow and diffusion. Results: Both BFR20 and FF20 exercise resulted in a larger acute decrease in R2, decrease in R2', and expansion of the extracellular compartment with slower rates of recovery. BFR20 caused greater acute increases in muscle CSA than FF20WM and FF70. Only BFR20 caused acute increases in intracellular volume. Post-exercise muscle blood flow was higher after FF70 and FF20 exercise than BFR20. Acute changes in mean diffusivity were similar across all exercise protocols. Conclusion: This study was able to differentiate the acute physiological responses between anabolic exercise protocols. Low-load exercise protocols, known to have relatively higher energy contributions from glycolysis at task failure, elicited a higher mfMRI response. Noninvasive mfMRI represents a promising tool for decoding mechanisms of anabolic adaptation in muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3