Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude

Author:

Siebenmann C.12,Cathomen A.3,Hug M.1,Keiser S.1,Lundby A. K.1,Hilty M. P.4ORCID,Goetze J. P.5,Rasmussen P.6,Lundby C.17

Affiliation:

1. Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland;

2. Department of Environmental Physiology, School of Technology and Health, Royal Institute of Technology, Solna, Sweden;

3. Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland;

4. Intensive Care Unit, University Hospital of Zürich, Zürich, Switzerland;

5. Department of Clinical Biochemistry, Copenhagen, and Aarhus University, Aarhus, Denmark;

6. H. Lundbeck, Valby, Denmark; and

7. Food and Nutrition and Sport Science, Gothenburg University, Gothenburg, Sweden

Abstract

High altitude (HA) exposure facilitates a rapid contraction of plasma volume (PV) and a slower occurring expansion of hemoglobin mass (Hbmass). The kinetics of the Hbmass expansion has never been examined by multiple repeated measurements, and this was our primary study aim. The second aim was to investigate the mechanisms mediating the PV contraction. Nine healthy, normally trained sea-level (SL) residents (8 males, 1 female) sojourned for 28 days at 3,454 m. Hbmass was measured and PV was estimated by carbon monoxide rebreathing at SL, on every 4th day at HA, and 1 and 2 wk upon return to SL. Four weeks at HA increased Hbmass by 5.26% (range 2.5-11.1%; P < 0.001). The individual Hbmass increases commenced with up to 12 days of delay and reached a maximal rate of 4.04 ± 1.02 g/day after 14.9 ± 5.2 days. The probability for Hbmass to plateau increased steeply after 20–24 days. Upon return to SL Hbmass decayed by −2.46 ± 2.3 g/day, reaching values similar to baseline after 2 wk. PV, aldosterone concentration, and renin activity were reduced at HA ( P < 0.001) while the total circulating protein mass remained unaffected. In summary, the Hbmass response to HA exposure followed a sigmoidal pattern with a delayed onset and a plateau after ∼3 wk. The decay rate of Hbmass upon descent to SL did not indicate major changes in the rate of erythrolysis. Moreover, our data support that PV contraction at HA is regulated by the renin-angiotensin-aldosterone axis and not by changes in oncotic pressure.

Funder

Swiss National Science Foundation (Schweizerische Nationalfonds)

Zürich center for integrative human physiology

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3