Cell type-specific response to growth on soft materials

Author:

Georges Penelope C.,Janmey Paul A.

Abstract

Many cell types respond to forces as acutely as they do to chemical stimuli, but the mechanisms by which cells sense mechanical stimuli and how these factors alter cellular structure and function in vivo are far less explored than those triggered by chemical ligands. Forces arise both from effects outside the cell and from mechanochemical reactions within the cell that generate stresses on the surface to which the cells adhere. Several recent reviews have summarized how externally applied forces may trigger a cellular response (Silver FH and Siperko LM. Crit Rev Biomed Eng 31: 255–331, 2003; Estes BT, Gimble JM, and Guilak F. Curr Top Dev Biol 60: 91–126, 2004; Janmey PA and Weitz DA. Trends Biochem Sci 29: 364–370, 2004). The purpose of this review is to examine the information available in the current literature describing the relationship between a cell and the rigidity of the matrix on which it resides. We will review recent studies and techniques that focus on substrate compliance as a major variable in cell culture studies. We will discuss the specificity of cell response to stiffness and discuss how this may be important in particular tissue systems. We will attempt to link the mechanoresponse to real pathological states and speculate on the possible biological significance of mechanosensing.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 425 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3