Validation of measurements of ventilation-to-perfusion ratio inequality in the lung from expired gas

Author:

Prisk G. Kim1,Guy Harold J. B.1,West John B.1,Reed James W.1

Affiliation:

1. Department of Medicine 0931, University of California, San Diego, La Jolla, California 92093

Abstract

The analysis of the gas in a single expirate has long been used to estimate the degree of ventilation-perfusion (V˙a/Q˙) inequality in the lung. To further validate this estimate, we examined three measures ofV˙a/Q˙ inhomogeneity calculated from a single full exhalation in nine anesthetized mongrel dogs under control conditions and after exposure to aerosolized methacholine. These measurements were then compared with arterial blood gases and with measurements of V˙a/Q˙ inhomogeneity obtained using the multiple inert gas elimination technique. The slope of the instantaneous respiratory exchange ratio (R slope) vs. expired volume was poorly correlated with independent measures, probably because of the curvilinear nature of the relationship due to continuing gas exchange. When R was converted to the intrabreathV˙a/Q˙ (iV˙/Q˙), the best index was the slope of iV˙/Q˙ vs. volume over phase III (iV˙/Q˙slope). This was strongly correlated with independent measures, especially those relating to inhomogeneity of perfusion. The correlations for iV˙/Q˙ slope and R slope considerably improved when only the first half of phase III was considered. We conclude that a useful noninvasive measurement ofV˙a/Q˙ inhomogeneity can be derived from the intrabreath respiratory exchange ratio.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ventilation/Perfusion Relationships and Gas Exchange: Measurement Approaches;Comprehensive Physiology;2020-07-08

2. Ventilation, Blood Flow, and Their Inter‐Relationships;Cotes’ Lung Function;2020-02-21

3. Deriving the arterial Po2 and oxygen deficit from expired gas and pulse oximetry;Journal of Applied Physiology;2019-10-01

4. Review of the MIGET Literature;The Multiple Inert Gas Elimination Technique (MIGET);2017

5. Microgravity and the respiratory system;European Respiratory Journal;2014-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3