Significance of epimuscular myofascial force transmission under passive muscle conditions

Author:

Maas Huub1ORCID

Affiliation:

1. Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands

Abstract

In the past 20 yr, force transmission via connective tissue linkages at the muscle belly surface, called epimuscular myofascial force transmission, has been studied extensively. In this article, the effects of epimuscular linkages under passive muscle conditions are reviewed. Several animal studies that included direct (invasive) measurements of force transmission have shown that different connective tissue structures serve as an epimuscular pathway and that these tissues have sufficient stiffness, especially at supraphysiological muscle lengths and relative positions, to transmit substantial passive forces (up to 15% of active optimal force). Exact values of lumped tissue stiffness for different connective tissue structures have not yet been estimated. Experiments using various imaging techniques (ultrasound, MRI, shear wave elastography) have yielded some, but weak, evidence of epimuscular myofascial force transmission for passive muscles in humans. At this point, the functional consequences of epimuscular pathways for muscle and joint mechanics in the intact body are still unknown. Potentially, however, these pathways may affect sensory feedback and, thereby, neuromuscular control. In addition, altered epimuscular force transmission in pathological conditions may also contribute to changes in passive range of joint motion.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3