Torque gains and neural adaptations following low-intensity motor nerve electrical stimulation training

Author:

Vitry Florian1ORCID,Martin Alain1,Papaiordanidou Maria1

Affiliation:

1. INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France

Abstract

The purpose of the study was to assess neural adaptations of the plantar-flexors induced by an electrical stimulation training applied over the motor nerve at low intensity using two different stimulation frequencies. Thirty subjects were randomly assigned into 3 groups: 20 Hz, 100 Hz, and control group. The training consisted of 15 sessions of 25 stimulation trains applied over the tibial nerve and delivered at an intensity evoking 10% maximal voluntary isometric contraction (MVIC). Before and after training, MVIC was assessed and neural adaptations were evaluated by the voluntary activation level (VAL) and the V-wave (normalized by the superimposed muscle compound action potential, V/MSUP). H-reflex and motor-evoked potential (MEP) recorded during MVIC were studied to assess spinal and corticospinal excitabilities [i.e., maximal H-reflex during maximal voluntary isometric contraction (HSUP)/MSUPand maximal motor-evoked potential during maximal voluntary isometric contraction (MEPSUP)/MSUP]. MVIC significantly increased after training only for the two training groups ( P = 0.017). This increase was accompanied by a significant increase of VAL only for these groups ( P = 0.014), whereas statistical analysis revealed a time effect for V/MSUP( P = 0.022). HSUP/MSUPand MEPSUP/MSUPwere significantly increased at post conditions only for the 100 Hz group ( P = 0.021 and P = 0.029). Results show that low-intensity electrical stimulation training applied over the motor nerve can induce torque gains, accompanied by neural adaptations. Stimulation frequency differentially affected spinal and corticospinal excitabilities, indicating that neural adaptations could have a supraspinal origin for the 20-Hz protocol, whereas spinal and supraspinal mechanisms were implicated in the torque increases after the 100-Hz training.NEW & NOTEWORTHY This study brings new insights into the neurophysiological mechanisms responsible for torque gains after electrical stimulation training using wide pulse duration and low stimulation intensity applied over the motor nerve. Stimulation frequency had a distinct impact on spinal and/or supraspinal origins of the observed neural adaptations. The use of the aforementioned stimulation parameters in rehabilitation settings can be proved beneficial in terms of strength gains while avoiding any serious discomfort because of stimulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3