Cremaster muscle perfusion, oxygenation, and heterogeneity revealed by a new automated acquisition system in a rodent model of prolonged hemorrhagic shock

Author:

Torres Filho Ivo P.1,Barraza David1,Hildreth Kim1,Williams Charnae1,Dubick Michael A.1

Affiliation:

1. Damage Control Resuscitation, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas

Abstract

Local blood flow/oxygen partial pressure (Po2) distributions and flow-Po2 relationships are physiologically relevant. They affect the pathophysiology and treatment of conditions like hemorrhagic shock (HS), but direct noninvasive measures of flow, Po2, and their heterogeneity during prolonged HS are infrequently presented. To fill this void, we report the first quantitative evaluation of flow-Po2 relationships and heterogeneities in normovolemia and during several hours of HS using noninvasive, unbiased, automated acquisition. Anesthetized rats were subjected to tracheostomy, arterial/venous catheterizations, cremaster muscle exteriorization, hemorrhage (40% total blood volume), and laparotomy. Control animals equally instrumented were not subjected to hemorrhage/laparotomy. Every 0.5 h for 4.5 h, noninvasive laser speckle contrast imaging and phosphorescence quenching were employed for nearly 7,000 flow/Po2 measurements in muscles from eight animals, using an automated system. Precise alignment of 16 muscle areas allowed overlapping between flow and oxygenation measurements to evaluate spatial heterogeneity, and repeated measurements were used to estimate temporal heterogeneity. Systemic physiological parameters and blood chemistry were simultaneously assessed by blood samplings replaced with crystalloids. Hemodilution was associated with local hypoxia, but increased flow prevented major oxygen delivery decline. Adding laparotomy and prolonged HS resulted in hypoxia, ischemia, decreased tissue oxygen delivery, and logarithmic flow/Po2 relationships in most regions. Flow and Po2 spatial heterogeneities were higher than their respective temporal heterogeneities, although this did not change significantly over the studied period. This quantitative framework establishes a basis for evaluating therapies aimed at restoring muscle homeostasis, positively impacting outcomes of civilian and military trauma/HS victims. NEW & NOTEWORTHY This is the first study on flow-Po2 relationships during normovolemia, hemodilution, and prolonged hemorrhagic shock using noninvasive methods in multiple skeletal muscle areas of monitored animals. Automated flow/Po2 measurements revealed temporal/spatial heterogeneities, hypoxia, ischemia, and decreased tissue oxygen delivery after trauma/severe hemorrhage. Hemodilution was associated with local hypoxia, but hyperemia prevented a major decline in oxygen delivery. This framework provides a quantitative basis for testing therapeutics that positively impacts muscle homeostasis and outcomes of trauma/hemorrhagic shock victims.

Funder

US Army Medical Research and Development Command

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3