Author:
Dellacà Raffaele L.,Black Lauren D.,Atileh Haytham,Pedotti Antonio,Lutchen Kenneth R.
Abstract
We simultaneously evaluated the mechanical response of the total respiratory system, lung, and chest wall to changes in posture and to bronchoconstriction. We synthesized the optimal ventilation waveform (OVW) approach, which simultaneously provides ventilation and multifrequency forcing, with optoelectronic plethysmography (OEP) to measure chest wall flow globally and locally. We applied an OVW containing six frequencies from 0.156 to 4.6 Hz to the mouth of six healthy men in the seated and supine positions, before and after methacholine challenge. We measured mouth, esophageal, and transpulmonary pressures, airway flow by pneumotachometry, and total chest wall, pulmonary rib cage, and abdominal volumes by OEP. We computed total respiratory, lung, and chest wall input impedances and the total and regional transfer impedances (Ztr). These data were appropriately sensitive to changes in posture, showing added resistance in supine vs. seated position. The Ztr were also highly sensitive to lung constriction, more so than input impedance, as the former is minimally distorted by shunting of flow into alveolar gas compression and airway walls. Local impedances show that, during bronchoconstriction and at typical breathing frequencies, the contribution of the abdomen becomes amplified relative to the rib cage. A similar redistribution occurs when passing from seated to supine. These data suggest that the OEP-OVW approach for measuring Ztr could noninvasively track important lung and respiratory conditions, even in subjects who cannot cooperate. Applications might range from routine evaluation of airway hyperreactivity in asthmatic subjects to critical conditions in the supine position during mechanical ventilation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献