The biomechanics of the fastest sprinter with a unilateral transtibial amputation

Author:

Beck Owen N.1,Grabowski Alena M.12

Affiliation:

1. Department of Integrative Physiology, University of Colorado, Boulder, Colorado

2. Department of Veterans Affairs, Eastern Colorado Healthcare System, Denver, Colorado

Abstract

People have debated whether athletes with transtibial amputations should compete with nonamputees in track events despite insufficient information regarding how the use of running-specific prostheses (RSPs) affect athletic performance. Thus, we sought to quantify the spatiotemporal variables, ground reaction forces, and spring-mass mechanics of the fastest athlete with a unilateral transtibial amputation using an RSP to reveal how he adapts his biomechanics to achieve elite running speeds. Accordingly, we measured ground reaction forces during treadmill running trials spanning 2.87 to 11.55 m/s of the current male International Paralympic Committee T44 100- and 200-m world record holder. To achieve faster running speeds, the present study’s athlete increased his affected leg (AL) step lengths ( P < 0.001) through longer contact lengths ( P < 0.001) and his unaffected leg (UL) step lengths ( P < 0.001) through longer contact lengths ( P < 0.001) and greater stance average vertical ground reaction forces ( P < 0.001). At faster running speeds, step time decreased for both legs ( P < 0.001) through shorter ground contact and aerial times ( P < 0.001). Unlike athletes with unilateral transtibial amputations, this athlete maintained constant AL and UL stiffness across running speeds ( P ≥ 0.569). Across speeds, AL step lengths were 8% longer ( P < 0.001) despite 16% lower AL stance average vertical ground reaction forces compared with the UL ( P < 0.001). The present study’s athlete exhibited biomechanics that differed from those of athletes with bilateral and without transtibial amputations. Overall, we present the biomechanics of the fastest athlete with a unilateral transtibial amputation, providing insight into the functional abilities of athletes with transtibial amputations using running-specific prostheses.NEW & NOTEWORTHY The present study’s athlete achieved the fastest treadmill running trial ever attained by an individual with a leg amputation (11.55 m/s). From 2.87 to 11.55 m/s, the present study’s athlete maintained constant affected and unaffected leg stiffness, which is atypical for athletes with unilateral transtibial amputations. Furthermore, the asymmetric vertical ground reaction forces of athletes with unilateral transtibial amputations during running may be the result of leg length discrepancies.

Funder

U.S. Department of Defense (DOD)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3