Organ-level right ventricular dysfunction with preserved Frank-Starling mechanism in a mouse model of pulmonary arterial hypertension

Author:

Wang Zhijie12ORCID,Patel Jitandrakumar R.3,Schreier David A.1,Hacker Timothy A.4,Moss Richard L.3,Chesler Naomi C.14

Affiliation:

1. Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin

2. Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado

3. Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin

4. Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin

Abstract

Pulmonary arterial hypertension (PAH) is a rapidly fatal disease in which mortality is due to right ventricular (RV) failure. It is unclear whether RV dysfunction initiates at the organ level or the subcellular level or both. We hypothesized that chronic pressure overload-induced RV dysfunction begins at the organ level with preserved Frank-Starling mechanism in myocytes. To test this hypothesis, we induced PAH with Sugen + hypoxia (HySu) in mice and measured RV whole organ and subcellular functional changes by in vivo pressure-volume measurements and in vitro trabeculae length-tension measurements, respectively, at multiple time points for up to 56 days. We observed progressive changes in RV function at the organ level: in contrast to early PAH (14-day HySu), in late PAH (56-day HySu) ejection fraction and ventricular-vascular coupling were decreased. At the subcellular level, direct measurements of myofilament contraction showed that RV contractile force was similarly increased at any stage of PAH development. Moreover, cross-bridge kinetics were not changed and length dependence of force development (Frank-Starling relation) were not different from baseline in any PAH group. Histological examinations confirmed increased cardiomyocyte cross-sectional area and decreased von Willebrand factor expression in RVs with PAH. In summary, RV dysfunction developed at the organ level with preserved Frank-Starling mechanism in myofilaments, and these results provide novel insight into the development of RV dysfunction, which is critical to understanding the mechanisms of RV failure. NEW & NOTEWORTHY A multiscale investigation of pulmonary artery pressure overload in mice showed time-dependent organ-level right ventricular (RV) dysfunction with preserved Frank-Starling relations in myofilaments. Our findings provide novel insight into the development of RV dysfunction, which is critical to understanding mechanisms of RV failure.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3