Mechanisms of inspiration that modulate cardiovascular control: the other side of breathing

Author:

Convertino Victor A.1

Affiliation:

1. Battlefield Health & Trauma Center for Human Integrative Physiology, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas

Abstract

The objective of this minireview is to describe the physiology and potential clinical benefits derived from inspiration. Recent animal and clinical studies demonstrate that one of the body’s natural mechanisms associated with inspiration is to harness the respiratory pump to enhance circulation to vital organs. There is evidence that large reductions in intrathoracic pressure (>20 cmH2O) caused by some inspiration maneuvers (e.g., Mueller maneuver) or pathophysiology (e.g., heart failure, chronic obstructive lung disease) can result in adverse hemodynamic effects. However, the respiratory pump can improve cardiovascular functions when a “sweet spot” for generation of negative intrathoracic pressure during inspiration can be maintained at or less than 10 cmH2O below normal inspiration. These beneficial physiological effects include greater cardiac filling and output, lower intracranial pressure, cardiac baroreflex resetting, greater cerebral blood flow oscillatory patterns, increased vascular pressure gradients, and promoting sustained feedback between sympathetic nerve activity and arterial pressure. In addition to promoting gas exchange, data obtained from numerous animal and human experiments have provided new insights into “the other side of breathing”: the modulation of circulation by reduced intrathoracic pressure generated during inspiration. The translation of these physiological relationships form the basis for the development and application of technologies designed to optimize the intrathoracic pump for treatment of clinical conditions associated with hypovolemia including cardiac arrest, orthostatic hypotension, hemorrhagic shock, and traumatic brain injury. Harnessing these fundamental mechanisms that control cardiopulmonary physiology provides opportunities to use inspiration as a potential tool to help treat significant and often life-threatening circulatory disorders.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3