Pressure (≤4 ATA) increases membrane conductance and firing rate in the rat solitary complex

Author:

Mulkey Daniel K.,Henderson Richard A.,Putnam Robert W.,Dean Jay B.

Abstract

Neuronal sensitivity to pressure, barosensitivity, is illustrated by high-pressure nervous syndrome, which manifests as increased central nervous system excitability when heliox or trimix is breathed at >15 atmospheres absolute (ATA). We have tested the hypothesis that smaller levels of pressure (≤4 ATA) also increase neuronal excitability. The effect of hyperbaric helium, which mimics increased hydrostatic pressure, was determined on putative CO2/H+-chemoreceptor neurons in the solitary complex in rat brain stem slices by intracellular recording. Pressure stimulated firing rate in 31% of neurons (barosensitivity) and decreased input resistance. Barosensitivity was retained during synaptic blockade and was unaffected by antioxidants. Barosensitivity was distributed among CO2/H+-chemosensitive and -insensitive neurons; in CO2/H+-chemosensitive neurons, pressure did not significantly reduce neuronal chemosensitivity. We conclude that moderate pressure stimulates certain solitary complex neurons by a mechanism that possibly involves an increased cation conductance, but that does not involve free radicals. Neuronal barosensitivity to ≤4 ATA may represent a physiological adaptive response to increased pressure or a pathophysiological response that is the early manifestation of high-pressure nervous syndrome.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference50 articles.

1. Bennett P. Inert gas narcosis and high pressure nervous syndrome. In: Bove and Davis' Diving Medicine (3rd ed.), edited by Bove AA. Philadelphia, PA: Saunders, 1997, p. 117-130.

2. The effect of raised pressure of inert gases of phospholipid membranes

3. Repair of amino acid radicals by a vitamin E analogue

4. Temperature Receptors in the Central Nervous System

5. Hydrostatic pressure effects on the central nervous system: perspectives and outlook

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3