Author:
Forbes S. C.,Kowalchuk J. M.,Thompson R. T.,Marsh G. D.
Abstract
The effects of controlled voluntary hyperventilation (Hyp) on phosphocreatine (PCr) kinetics and muscle deoxygenation were examined during moderate-intensity plantar flexion exercise. Male subjects ( n = 7) performed trials consisting of 20-min rest, 6-min exercise, and 10-min recovery in control [Con; end-tidal Pco2(PetCO2) ∼ 33 mmHg] and Hyp (PetCO2∼17 mmHg) conditions. Phosphorus-31 magnetic resonance and near-infrared spectroscopy were used simultaneously to monitor intramuscular acid-base status, high-energy phosphates, and muscle oxygenation. Resting intracellular hydrogen ion concentration ([H+]i) was lower ( P < 0.05) in Hyp [90 nM (SD 3)] than Con [96 nM (SD 4)]; however, at end exercise, [H+]iwas greater ( P < 0.05) in Hyp [128 nM (SD 19)] than Con [120 nM (SD 17)]. At rest, [PCr] was not different between Con [36 mM (SD 2)] and Hyp [36 mM (SD 1)]. The time constant (τ) of PCr breakdown during transition from rest to exercise was greater ( P < 0.05) in Hyp [39 s (SD 22)] than Con [32 s (SD 22)], and the PCr amplitude was greater ( P < 0.05) in Hyp [26% (SD 4)] than Con [22% (SD 6)]. The deoxyhemoglobin and/or deoxymyoglobin (HHb) τ was similar between Hyp [13 s (SD 8)] and Con [10 s (SD 3)]; however, the amplitude was increased ( P < 0.05) in Hyp [40 arbitrary units (au) (SD 23)] compared with Con [26 au (SD 17)]. In conclusion, our results indicate that Hyp-induced hypocapnia enhanced substrate-level phosphorylation during moderate-intensity exercise. In addition, the increased amplitude of the HHb response suggests a reduced local muscle perfusion in Hyp compared with Con.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献