Affiliation:
1. Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute for Health and Sports Science, University of Tsukuba, Tsukuba, Japan,
2. Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan; and
3. Laboratory of Neuroendocrinology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
Abstract
Although voluntary running has beneficial effects on hippocampal cognitive functions if done abundantly, it is still uncertain whether resistance running would be the same. For this purpose, voluntary resistance wheel running (RWR) with a load is a suitable model, since it allows increased work levels and resultant muscular adaptation in fast-twitch muscle. Here, we examined whether RWR would have potential effects on hippocampal cognitive functions with enhanced hippocampal brain-derived neurotrophic factor (BDNF), as does wheel running without a load (WR). Ten-week-old male Wistar rats were assigned randomly to sedentary (Sed), WR, and RWR (to a maximum load of 30% of body weight) groups for 4 wk. We found that in RWR, work levels increased with load, but running distance decreased by about half, which elicited muscular adaptation for fast-twitch plantaris muscle without causing any negative stress effects. Both RWR and WR led to improved spatial learning and memory as well as gene expressions of hippocampal BDNF signaling-related molecules. RWR increased hippocampal BDNF, tyrosine-related kinase B (TrkB), and cAMP response element-binding (CREB) protein levels, whereas WR increased only BDNF. With both exercise groups, there were correlations between spatial memory and BDNF protein ( r = 0.41), p-CREB protein ( r = 0.44), and work levels ( r = 0.77). These results suggest that RWR plays a beneficial role in hippocampus-related cognitive functions associated with hippocampal BDNF signaling, even with short distances, and that work levels rather than running distance are more determinant of exercise-induced beneficial effects in wheel running with and without a load.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献