A mouse-based strategy for cyclophosphamide pharmacogenomic discovery

Author:

Watters James W.,Kloss Ellen F.,Link Daniel C.,Graubert Timothy A.,McLeod Howard L.

Abstract

Genome-wide mapping approaches are needed to more fully understand the genetic basis of chemotherapy response. Because of technical and ethical limitations, cancer pharmacogenomics has not yet benefited from traditional robust familial genetic strategies. We have therefore explored the use of the inbred mouse as a genetic model system in which to study response to the cytotoxic agent cyclophosphamide. Multiple phenotypes have been assessed in response to cyclophosphamide in up to 19 inbred mouse strains, including in vitro hematopoietic progenitor cell toxicity and the mobilization of hematopoietic progenitor cells into peripheral blood. Hematopoietic progenitor cell toxicity in vitro varied 2-fold among strains, whereas in vivo progenitor cell mobilization varied almost 75-fold among strains. Males mobilized more hematopoietic progenitor cells than did females, and the low-mobilization phenotype was dominant to the high-mobilization phenotype in F1 hybrid animals. In an initial attempt to analyze candidate genes, genetic variation was assessed in three cytochrome P-450 genes involved in the metabolism of cyclophosphamide. Resequencing of eight strains identified 26 polymorphisms in these genes that may influence response to cyclophosphamide. Distinct regions of high- and low-polymorphism rates were identified, and two common haplotypes were shared among the strains for each gene that exhibited variation. This phenotypic and genotypic variation among inbred strains provides a framework for cyclophosphamide pharmacogenomic discovery.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3