New insights into ocular blood flow at very high altitudes

Author:

Bosch Martina M.,Merz Tobias M.,Barthelmes Daniel,Petrig Benno L.,Truffer Frederic,Bloch Konrad E.,Turk Alex,Maggiorini Marco,Hess Thomas,Schoch Otto D.,Hefti Urs,Sutter Florian K. P.,Pichler Jacqueline,Huber Andreas,Landau Klara

Abstract

Little is known about the ocular and cerebral blood flow during exposure to increasingly hypoxic conditions at high altitudes. There is evidence that an increase in cerebral blood flow resulting from altered autoregulation constitutes a risk factor for acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) by leading to capillary overperfusion and vasogenic cerebral edema. The retina represents the only part of the central nervous system where capillary blood flow is visible and can be measured by noninvasive means. In this study we aimed to gain insights into retinal and choroidal autoregulatory properties during hypoxia and to correlate circulatory changes to symptoms of AMS and clinical signs of HACE. This observational study was performed within the scope of a high-altitude medical research expedition to Mount Muztagh Ata (7,546 m). Twenty seven participants underwent general and ophthalmic examinations up to a maximal height of 6,800 m. Examinations included fundus photography and measurements of retinal and choroidal blood flow, as well as measurement of arterial oxygen saturation and hematocrit. The initial increase in retinal blood velocity was followed by a decrease despite further ascent, whereas choroidal flow increase occurred later, at even higher altitudes. The sum of all adaptational mechanisms resulted in a stable oxygen delivery to the retina and the choroid. Parameters reflecting the retinal circulation and optic disc swelling correlated well with the occurrence of AMS-related symptoms. We demonstrate that sojourns at high altitudes trigger distinct behavior of retinal and choroidal blood flow. Increase in retinal but not in choroidal blood flow correlated with the occurrence of AMS-related symptoms.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3