High-frequency submaximal stimulation over muscle evokes centrally generated forces in human upper limb skeletal muscles

Author:

Blouin Jean-Sébastien,Walsh Lee D.,Nickolls Peter,Gandevia Simon C.

Abstract

Control of posture and movement requires control of the output from motoneurons. Motoneurons of human lower limb muscles exhibit sustained, submaximal activity to high-frequency electrical trains, which has been hypothesized to be partly triggered by monosynaptic Ia afferents. The possibility to trigger such behavior in upper limb motoneurons and the potential unique role of Ia afferents to trigger such behavior remain unclear. Subjects ( n = 9) received high-frequency trains of electrical stimuli over biceps brachii and flexor pollicis longus (FPL). We chose to study the FPL muscle because it has weak monosynaptic Ia afferent connectivity and it is involved in fine motor control of the thumb. Two types of stimulus trains (100-Hz bursts and triangular ramps) were tested at five intensities below painful levels. All subjects exhibited enhanced torque in biceps and FPL muscles after both types of high-frequency train. Torques also persisted after stimulation, particularly for the highest stimulus intensity. To separate the evoked torques that resulted from a peripheral mechanism (e.g., muscle potentiation) and that which resulted from a central origin, we studied FPL responses to high-frequency trains after complete combined nerve blocks of the median and radial nerves ( n = 2). During the blocks, high-frequency trains over the FPL did not yield torque enhancements or persisting torques. These results suggest that enhanced contractions of central origin can be elicited in motoneurons innervating the upper limb, despite weak monosynaptic Ia connections for FPL. Their presence in a recently evolved human muscle (FPL) indicates that these enhanced contractions may have a broad role in controlling tonic postural outputs of hand muscles and that they may be available even for fine motor activities involving the thumb.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3