Altered connexin43 expression produces arrhythmia substrate in heart failure

Author:

Poelzing Steven,Rosenbaum David S.

Abstract

Recently, we found that repolarization heterogeneities between subepicardial and midmyocardial cells can form a substrate for reentrant ventricular arrhythmias in failing myocardium. We hypothesized that the mechanism responsible for maintaining transmural action potential duration heterogeneities in heart failure is related to intercellular uncoupling from downregulation of cardiac gap junction protein connexin43 (Cx43). With the use of the canine model of pacing-induced heart failure, left ventricles were sectioned to expose the transmural surface ( n = 5). To determine whether heterogeneous Cx43 expression influenced electrophysiological function, high-resolution transmural optical mapping of the arterially perfused canine wedge preparation was used to measure conduction velocity (θTM), effective transmural space constant (λTM), and transmural gradients of action potential duration (APD). Absolute Cx43 expression in failing myocardium, quantified by confocal immunofluorescence, was uniformly reduced (by 40 ± 3%, P < 0.01) compared with control. Relative Cx43 expression was heterogeneously distributed and lower (by 32 ± 18%, P < 0.05) in the subepicardium compared with deeper layers. Reduced Cx43 expression in heart failure was associated with significant reductions in intercellular coupling between transmural muscle layers, as evidenced by reduced θTM(by 18.9 ± 4.9%) and λTM(by 17.2 ± 1.4%; P < 0.01) compared with control. Heterogeneous transmural distribution of Cx43 in failing myocardium was associated with lower subepicardial θTM(by 12 ± 10%) and λTM(by 13 ± 7%), compared with deeper transmural layers ( P < 0.05). APD dispersion was greatest in failing myocardium, and the largest transmural APD gradients were consistently found in regions exhibiting lowest relative Cx43 expression. These data demonstrate that reduced Cx43 expression produces uncoupling between transmural muscle layers leading to slowed conduction and marked dispersion of repolarization between epicardial and deeper myocardial layers. Therefore, Cx43 expression patterns can potentially contribute to an arrhythmic substrate in failing myocardium.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3