Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes

Author:

Yao Zhenhai1,Tong Jiankun1,Tan Xiaohui1,Li Changqing2,Shao Zuohui2,Kim Woo Chan1,vanden Hoek Terry L.2,Becker Lance B.2,Head C. Alvin3,Schumacker Paul T.2

Affiliation:

1. Departments of Anesthesia and Critical Care and

2. Medicine, University of Chicago, Chicago, Illinois 60637; and

3. Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114

Abstract

We examined the ability of ACh to mimic ischemic preconditioning in cardiomyocytes and the role of ATP-sensitive potassium (KATP) channels and mitochondrial reactive oxygen species (ROS) in mediating this effect. Chick embryonic ventricular myocytes were studied in a flow-through chamber while flow rate, pH,[Formula: see text], and[Formula: see text] were controlled. Cell viability was quantified with propidium iodide (5 μM), and production of ROS was measured using 2′,7′-dichlorofluorescin diacetate. Data were expressed as means ± SE. Preconditioning with 10 min of ischemia followed by 10 min of reoxygenation or 10 min of ACh (1 mM) followed by a drug-free period before 1 h of ischemia and 3 h of reoxygenation reduced cell death to the same extent [preconditioning 19 ± 2% ( n = 6, P < 0.05) ACh 21 ± 5% ( n = 6, P < 0.05) vs controls 42 ± 5% ( n = 9)]. Like preconditioning, ACh increased ROS production threefold before ischemia [0.60 ± 0.16 ( n = 7, P< 0.05) vs. controls, 0.16 ± 0.03 ( n = 6); arbitrary units]. Protection and increased ROS production during ACh preconditioning were abolished with 5-hydroxydecanoate (5-HD, 100 μM), a selective mitochondrial KATP channel antagonist, and the thiol reductant 2-mercaptopropionyl glycine (2-MPG, 1 mM), an antioxidant [cell death: 5-HD+ACh 37 ± 7% ( n = 5), 2-MPG+ACh 47 ± 6% ( n = 6); ROS signals: 5-HD+ACh 0.09 ± 0.03 ( n = 5), 2-MPG+ACh 0.01 ± 0.04 ( n = 4)]. In addition, ACh-induced ROS signaling was blocked by the mitochondrial site III electron transport inhibitor myxothiazol (0.02 ± 0.07, n = 5). These results demonstrate that activation of mitochondrial KATPchannels and increased ROS production from mitochondria are important intracellular signals that participate in ACh-induced preconditioning in cardiomyocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3