Activation of GABAA but not GABAB receptors in the NTSblocked bradycardia of chemoreflex in awake rats

Author:

Callera João Carlos1,Bonagamba Leni G. H.1,Nosjean Anne2,Laguzzi Raul2,Machado Benedito H.1

Affiliation:

1. Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil; and

2. Institut National de la Santé et de la Recherche Médicale Unité 288, Centre Hospitalier Universitaire Pitié-Salpêtrière, 75634 Paris Cedex 13, France

Abstract

In the present study we analyzed effects of bilateral microinjections of muscimol (a GABAA agonist) and baclofen (a GABAB agonist) into the nucleus tractus solitarius (NTS) on bradycardic and pressor responses to chemoreflex activation (potassium cyanide, 40 μg/rat iv) in awake rats. Bilateral microinjections of muscimol (25 and 50 pmol/50 nl) into the NTS increased baseline mean arterial pressure (MAP): 119 ± 8 vs. 107 ± 2 mmHg ( n = 6) and 121 ± 8 vs. 103 ± 3 mmHg ( n= 6), respectively. Muscimol at 25 pmol/50 nl reduced the bradycardic response to chemoreflex activation 5 min after microinjection; with 50 pmol/50 nl the bradycardic response to chemoreflex activation was reduced 5, 15, 30, and 60 min after microinjection. Neither muscimol dose produced an effect on the pressor response of the chemoreflex. Effects of muscimol (50 pmol/50 nl) on basal MAP and on the bradycardic response of the chemoreflex were prevented by prior microinjection of bicuculline (a GABAA antagonist, 40 pmol/50 nl) into the NTS. Bilateral microinjections of baclofen (12.5 and 25 pmol/50 nl) into the NTS produced an increase in baseline MAP [137 ± 9 vs. 108 ± 4 ( n= 7) and 145 ± 5 vs. 105 ± 2 mmHg ( n = 7), respectively], no changes in basal heart rate, and no effects on the bradycardic response; 25 pmol/50 nl only attenuated the pressor response to chemoreflex activation. The data show that activation of GABAA receptors in the NTS produces a significant reduction in the bradycardic response, whereas activation of GABAB receptors produces a significant reduction in the pressor response of the chemoreflex. We conclude that 1) GABAA but not GABAB plays an inhibitory role in neurons of the lateral commissural NTS involved in the parasympathetic component of the chemoreflex and 2) attenuation of the pressor response of the chemoreflex by activation of GABAB receptors may be due to inhibition of sympathoexcitatory neurons in the NTS or may be secondary to the large increase in baseline MAP produced by baclofen.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3