Affiliation:
1. Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil; and
2. Institut National de la Santé et de la Recherche Médicale Unité 288, Centre Hospitalier Universitaire Pitié-Salpêtrière, 75634 Paris Cedex 13, France
Abstract
In the present study we analyzed effects of bilateral microinjections of muscimol (a GABAA agonist) and baclofen (a GABAB agonist) into the nucleus tractus solitarius (NTS) on bradycardic and pressor responses to chemoreflex activation (potassium cyanide, 40 μg/rat iv) in awake rats. Bilateral microinjections of muscimol (25 and 50 pmol/50 nl) into the NTS increased baseline mean arterial pressure (MAP): 119 ± 8 vs. 107 ± 2 mmHg ( n = 6) and 121 ± 8 vs. 103 ± 3 mmHg ( n= 6), respectively. Muscimol at 25 pmol/50 nl reduced the bradycardic response to chemoreflex activation 5 min after microinjection; with 50 pmol/50 nl the bradycardic response to chemoreflex activation was reduced 5, 15, 30, and 60 min after microinjection. Neither muscimol dose produced an effect on the pressor response of the chemoreflex. Effects of muscimol (50 pmol/50 nl) on basal MAP and on the bradycardic response of the chemoreflex were prevented by prior microinjection of bicuculline (a GABAA antagonist, 40 pmol/50 nl) into the NTS. Bilateral microinjections of baclofen (12.5 and 25 pmol/50 nl) into the NTS produced an increase in baseline MAP [137 ± 9 vs. 108 ± 4 ( n= 7) and 145 ± 5 vs. 105 ± 2 mmHg ( n = 7), respectively], no changes in basal heart rate, and no effects on the bradycardic response; 25 pmol/50 nl only attenuated the pressor response to chemoreflex activation. The data show that activation of GABAA receptors in the NTS produces a significant reduction in the bradycardic response, whereas activation of GABAB receptors produces a significant reduction in the pressor response of the chemoreflex. We conclude that 1) GABAA but not GABAB plays an inhibitory role in neurons of the lateral commissural NTS involved in the parasympathetic component of the chemoreflex and 2) attenuation of the pressor response of the chemoreflex by activation of GABAB receptors may be due to inhibition of sympathoexcitatory neurons in the NTS or may be secondary to the large increase in baseline MAP produced by baclofen.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献