Affiliation:
1. Department of Physiology, New York Medical College, Valhalla, New York 10595
Abstract
Protein kinase C (PKC) and mitogen-activated protein (MAP) kinases have been implicated in the modulation of agonist-induced contractions of large vessels. However, their role in pressure- and agonist-induced constrictions of skeletal muscle arterioles, which have a major role in regulating peripheral resistance, is not clearly elucidated. Thus constrictions of isolated rat gracilis muscle arterioles (∼80 μm in diameter) to increases in intraluminal pressure and to norepinephrine (NE) or angiotensin II (ANG II) were assessed in the absence or presence of chelerythrine, PD-98058, and SB-203580 (inhibitors of PKC, p42/44 and p38 MAP kinase pathways, respectively). Arteriolar constriction to NE and ANG II were significantly reduced by chelerythrine (by ∼90%) and unaffected by SB-203580, whereas PD-98058 decreased only ANG II-induced constrictions (by ∼60%). Pressure-induced increases in wall tension (from 0.1 to 0.7 N/m) resulted in significant arteriolar constrictions (50% maximum) that were abolished by chelerythrine without altering smooth muscle intracellular Ca2+ concentration ([Ca2+]i) (fura 2 microfluorimetry). PD-98058 and SB-203580 significantly decreased the magnitude of myogenic tone (by 20% and 60%, respectively) and reduced the sensitivity of the myogenic mechanism to wall tension, causing a significant rightward shift in the wall tension-myogenic tone relationship without affecting smooth muscle [Ca2+ i]. MAP kinases were demonstrated with Western blotting. Thus in skeletal muscle arterioles 1) PKC is involved in both myogenic and agonist-induced constrictions , 2) PD-98058-sensitive p42/44 MAP kinases modulate both wall tension-dependent and ANG II-induced constrictions, whereas 3) a SB-203580-sensitive p38 MAP kinase pathway seems to be specifically involved in the mechanotransduction of wall tension.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献