Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury

Author:

Duvall Craig L.,Taylor W. Robert,Weiss Daiana,Guldberg Robert E.

Abstract

Transgenic mouse models are increasingly being used to investigate the functions of specific growth factors or matrix proteins to design therapeutic strategies for controlling blood vessel growth. However, the available methodologies for evaluating angiogenesis and arteriogenesis in these models are limited by animal size, user subjectivity, the power to visualize the three-dimensional vessel networks, or the capability to employ a vigorous quantitative analysis. In this study, we employed contrast-enhanced microcomputed tomography imaging to assess collateral development after induction of hindlimb ischemia in the mouse. The morphological parameters vessel volume, connectivity, number, thickness, thickness distribution, separation, and degree of anisotropy were evaluated in control and surgery limbs 0, 3, and 14 days postsurgery. Results indicate that the vascular volume of the surgically manipulated limb was reconstituted as early as 3 days after femoral artery excision through development of a series of highly connected, small caliber, closely spaced, and isotropically oriented collateral vessels. Parametric analyses were completed to assess the sensitivity of the calculated morphological parameters to variations in image binarization threshold and voxel size. Images taken at the 36-μm voxel size were found to be optimal for evaluating collateral vessel formation, whereas 8- to 16-μm voxel sizes were needed to resolve smaller vascular structures. This study demonstrates the utility of microcomputed tomography as a robust method for quantitative, three-dimensional analysis of blood vessel networks. Whereas these initial efforts focused on the mouse hindlimb ischemia model, the developed techniques may be applied to a variety of model systems to investigate mechanisms of angiogenesis and arteriogenesis.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3