Author:
Guo G. B.,Richardson D. R.
Abstract
The baroreflex control of hindquarter vascular resistance in response to a 30% blood volume expansion (BVE) was examined in constant-flow perfused hindlimbs of chloralose-urethan-anesthetized rats. Volume expansion initially increased both systemic arterial pressure (SAP) and central venous pressure (CVP) while decreasing hindquarter vascular resistance. After these initial changes, there was a parallel return of hindquarter-vascular resistance and CVP to pre-expansion levels, suggesting that cardiopulmonary afferents play a major role in the vascular resistance adjustments to volume expansion. This notion was supported in a separate set of experiments in which CVP was elevated selectively while SAP was held constant. This manipulation elicited a decrease in hindquarter vascular resistance, which was significantly attenuated following vagal cardiopulmonary denervation. The return of hindquarter vascular resistance following BVE also occurred in the presence of elevated SAP in rats with vagotomy and aortic nerve denervation, i.e., only the carotid sinus baroreflexes intact, but the time course was much faster compared with preparations with cardiopulmonary receptors intact. No response of hindquarter vascular resistance to BVE was observed in rats with both sinoaortic and cardiopulmonary baroreceptors denervated. These findings suggest that the return of hindquarter vascular resistance following BVE involves a gradual increase in sympathetic outflow to the hindquarters resulting from both a decrease in cardiopulmonary afferent activity and a rapid adaptation of arterial baroreflexes.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献