Nucleoside/nucleobase transport and metabolism by microvascular endothelial cells isolated from ENT1−/− mice

Author:

Bone Derek B. J.1,Choi Doo-Sup2,Coe Imogen R.3,Hammond James R.1

Affiliation:

1. Department of Physiology and Pharmacology, University of Western Ontario, London, Canada;

2. Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; and

3. Department of Biology, York University, Toronto, Canada

Abstract

Nucleoside and nucleobase uptake is integral to mammalian cell function, and its disruption has significant effects on the cardiovasculature. The predominant transporters in this regard are the equilibrative nucleoside transporter subtypes 1 (ENT1) and 2 (ENT2). To examine the role of ENT1 in more detail, we have assessed the mechanisms by which microvascular endothelial cells (MVECs) from ENT1−/− mice transport and metabolize nucleosides and nucleobases. Wild-type murine MVECs express mainly the ENT1 subtype with only trace levels of ENT2. These cells also have a Na+-independent equilibrative nucleobase transport mechanism for hypoxanthine (ENBT1). In the ENT1−/− cells, there is no change in ENT2 or ENBT1, resulting in a very low level of nucleoside uptake in these cells, but a high capacity for nucleobase accumulation. Whereas there were no significant changes in nucleoside transporter subtype expression, there was a dramatic increase in adenosine deaminase and adenosine A2a receptors (both transcript and protein) in the ENT1−/− tissues compared with WT. These changes in adenosine deaminase and A2a receptors likely reflect adaptive cellular mechanisms in response to reduced adenosine flux across the membranes of ENT1−/− cells. Our study also revealed that mouse MVECs have a nucleoside/nucleobase transport profile that is more similar to human MVECs than to rat MVECs. Thus mouse MVECs from transgenic animals may prove to be a useful preclinical model for studies of the effects of purine metabolite modifiers on vascular function.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3