Cyclosporin A inhibits cardiac hypertrophy and enhances cardiac dysfunction during postinfarction failure in rats

Author:

Øie Erik12,Bjørnerheim Reidar3,Clausen Ole Petter F.4,Attramadal Håvard12

Affiliation:

1. Merck Sharp & Dohme Cardiovascular Research Center,

2. Institute for Surgical Research,

3. Department of Cardiology, and

4. Institute of Pathology, National Hospital, University of Oslo, N-0027 Oslo, Norway

Abstract

Calcineurin has recently been implicated as a mediator in the signaling pathways that transform intracellular calcium signals to the phenotype of myocardial hypertrophy. The present study was conducted to examine the effects of cyclosporin A (CsA), an inhibitor of calcineurin, on myocardial hypertrophy and remodeling during congestive heart failure (CHF) in rats. After ligation of the left coronary artery, rats were randomized to treatment with CsA or vehicle for 14 days. Compared with vehicle, CsA substantially attenuated myocardial hypertrophy in the CHF rats as assessed by alterations in ventricular weight-to-tibial length ratios ( P < 0.05). Myocardial gene expression of skeletal α-actin was also reduced in the failing left ventricle (LV) after treatment with CsA ( P < 0.05), although the mRNA levels were still substantially elevated relative to those of sham rats. CsA-induced inhibition of compensatory myocardial hypertrophy in the CHF rats led to increased dilatation of the LV cavity and reduced fractional shortening and peak positive and negative first derivatives of LV pressure ( P < 0.05). Plasma renin and endothelin-1 levels were increased in the CHF-CsA rats, providing humoral cues of aggravated cardiac function. Thus this study supports a crucial role of calcineurin-dependent pathways in the mechanisms of compensatory myocardial hypertrophy during CHF. In addition, our data indicate that inhibition of compensatory myocardial hypertrophy exerts detrimental effects on cardiac remodeling and function after myocardial infarction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3