Role of the endothelial glycocalyx in dromotropic, inotropic, and arrythmogenic effects of coronary flow

Author:

Rubio Rafael1,Ceballos Guillermo1

Affiliation:

1. Department of Physiology, University of Virginia, Charlottesville, Virginia 22903; Department of Physiology, University Autonoma de San Luis Potosi, 78210 San Luis Potosi; and the Instituto Politecnico Nacional de Mexico, Mexico City, DF 11340 Mexico

Abstract

Coronary flow regulates cardiac functions, and it has been suggested that endothelial membrane glycosylated proteins are the primary shear stress mechanosensors. Our hypothesis was that if these proteins are the sensors for flow, then intracoronary perfusion of lectins or specific antibodies should differentially depress coronary flow-enhanced responses of different parenchymal cell types such as auricular-ventricular (A-V) nodal cells (dromotropic effect), contractile myocytes (inotropic effect), and junctional Purkinje-muscle cells (spontaneous ventricular rhythm). The coronary flow stimulatory effects on A-V delay and spontaneous ventricular rhythm were selectively depressed by six of eight lectins. None of the lectins depressed the coronary flow inotropic effect. Antibodies against endothelial surface proteins, αvβ5-integrin and sialyl-Lewisb glycan, depressed the dromotropic but not the inotropic effects of coronary flow, whereas the vascular cell adhesion molecule 1 antibody had no effect on the dromotropic, but enhanced the inotropic, effect. The fact that lectins and antibodies differentially depressed regional coronary flow effects suggests that there is a chemical distinctiveness in their intravascular endothelial cell surfaces. However, nonselective cross-linking of endothelial glycocalyx proteins with 2,000-kDa dextran-aldehyde or vitronectin indistinctively depressed the dromotropic and inotropic effects of coronary flow. These results indicate that coronary flow-induced stress acts on specific structures located in the capillary intravascular membrane glycocalyx.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3