Affiliation:
1. Cardiology Unit, Department of Medicine, and Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York 14642
Abstract
We reported recently that inhibition of neuronal reuptake of norepinephrine (NE) by desipramine prevented the reduction of sympathetic neurotransmitters in the failing right ventricle of right heart failure animals. In this study, we studied whether desipramine also reduced the sympathetic neurotransmitter loss in animals with left heart failure induced by rapid ventricular pacing (225 beats/min) or after chronic NE infusion (0.5 μg · kg−1 · min−1). Desipramine was given to the animals for 8 wk beginning with rapid ventricular pacing or NE infusion. Animals receiving no desipramine were studied as controls. We measured myocardial NE content, NE uptake activity, and sympathetic NE, tyrosine hydroxylase, and neuropeptide Y profiles by histofluorescence and immunocytochemical techniques. Effects of desipramine on NE uptake inhibition were evidenced by potentiation of the pressor response to exogenous NE and reduction of myocardial NE uptake activity. Desipramine treatment had no effect in sham or saline control animals but attenuated the reduction of sympathetic neurotransmitter profiles in the left ventricles of animals with rapid cardiac pacing and NE infusion. In contrast, the panneuronal marker protein gene product 9.5 profile was not affected by either rapid pacing or NE infusion, nor was it changed by desipramine treatment in the heart failure animals. The study confirms that excess NE contributes to the reduction of cardiac sympathetic neurotransmitters in heart failure. In addition, it shows that the anatomic integrity of the sympathetic nerves is relatively intact and that the neuronal damaging effect of NE involves the uptake of NE or its metabolites into the sympathetic nerves.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献