Affiliation:
1. Department of Mathematics, Technion, Israel Institute of Technology,Haifa.
Abstract
The coronary capillary flow is analyzed theoretically based on continuum mechanics. The capillary is a long, elastic, and permeable vessel loaded externally by tissue pressure, and it is subject to possible periodic length changes, together with adjacent myocytes. Capillary flow is driven by arteriolar-venular pressure difference. Ultrafiltration due to transmural hydrostatic and osmotic gradients is included, and consideration of mass conservation leads to a nonlinear flow equation. The results show that under physiological conditions ultrafiltration is of minor importance, and the analysis predicts regional differences in capillary flow. In regions with high tissue pressure (subendocardium), capillaries undergo significant periodic volume changes, giving rise to intramyocardial pumping. In those regions, capillary wall elasticity is of major importance. In regions with low tissue pressure (subepicardium), the possible periodic capillary length changes are predominant. The predicted flow patterns are in good qualitative agreement with measured epicardial phasic flow. In conclusion, the methodological advantage of a distributive analysis is demonstrated by its ability to elucidate and evaluate the role of flow determinants and their complex interactions.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献