Inotropic and lusitropic effects of calcitonin gene-related peptide in the heart

Author:

Al-Rubaiee Mustafa1,Gangula Pandu R.2,Millis Richard M.1,Walker Robin K.1,Umoh Nsini A.1,Cousins Valerie M.1,Jeffress Miara A.1,Haddad Georges E.1

Affiliation:

1. Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia; and

2. Department of Physiology, Center for Women's Health Research, Meharry Medical College, Nashville, Tennessee

Abstract

Previous studies have demonstrated positive-inotropic effects of calcitonin gene-related peptide (CGRP), but the mechanisms remain unclear. Therefore, two experiments were performed to determine the physiological correlates of the positive-inotropic effects of CGRP. Treatments designed to antagonize the effects of physiologically active CGRP1–37 included posttreatment with CGRP8–37 and pretreatment with LY-294002 (LY, an inhibitor of phosphatidylinositol 3-kinase), 17β-estradiol (E), and progesterone (P) were also used to modulate the effects of CGRP1–37. Experiment 1 was in vitro studies on sarcomeres and cells of isolated adult rat cardiac myocytes. CGRP1–37, alone and in combination with E and P, decreased sarcomere shortening velocities and increased shortening percentages, effects that were antagonized by CGRP8–37, but not by LY. CGRP1–37 increased resting intracellular calcium ion concentrations and Ca2+ influxes, effects that were also antagonized by both CGRP8–37 and LY. Experiment 2 was in vivo studies on left ventricular pressure-volume (PV) loops. CGRP1–37 increased end-systolic pressure, ejection fraction, and velocities of contraction and relaxation while decreasing stroke volume, cardiac output, stroke work, PV area, and compliance. After partial occlusion of the vena cava, CGRP1–37 increased the slope of the end-systolic PV relationship. CGRP8–37 and LY attenuated most of the CGRP-induced changes. These findings suggest that CGRP-induced positive-inotropic effects may be increased by treatments with estradiol and progesterone and inhibited by LY. The physiological correlates of CGRP-induced positive inotropy observed in rat sarcomeres, cells, and intact hearts are likely to reveal novel mechanisms of heart failure in humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3