Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury

Author:

Kusaka Ikuyo,Kusaka Gen,Zhou Changman,Ishikawa Mami,Nanda Anil,Granger D. Neil,Zhang John H.,Tang Jiping

Abstract

The objective of the present study was to examine the role of the angiotensin II type 1 receptor (AT1-R) in the diabetes-aggravated oxidative stress and brain injury observed in a rat model of combined diabetes and focal cerebral ischemia. Diabetes was induced by an injection of streptozotoxin (STZ; 55 mg/kg iv) at 8 wk of age. Two weeks after the induction of diabetes, some animals received continuous subcutaneous infusion of the AT1-R antagonist candesartan (0.5 mg·kg−1·day−1) for 14 days. Focal cerebral ischemia, induced by middle cerebral artery occlusion/reperfusion (MCAO), was conducted at 4 wk after STZ injection. Male Sprague-Dawley rats ( n = 189) were divided into five groups: normal control, diabetes, MCAO, diabetes + MCAO, and diabetes + MCAO + candesartan. The major observations were that 1) MCAO produced typical cerebral infarction and neurological deficits at 24 h that were accompanied by elevation of NAD(P)H oxidase gp91phox and p22phox mRNAs, and lipid hydroperoxide production in the ipsilateral hemisphere; 2) diabetes enhanced NAD(P)H oxidase gp91phox and p22phox mRNA expression, potentiated lipid peroxidation, aggravated neurological deficits, and enlarged cerebral infarction; and 3) candesartan reduced the expression of gp91phox and p22phox, decreased lipid peroxidation, lessened cerebral infarction, and improved the neurological outcome. We conclude that diabetes exaggerates the oxidative stress, NAD(P)H oxidase induction, and brain injury induced by focal cerebral ischemia. The diabetes-aggravated brain injury involves AT1-Rs. We have shown for the first time that candesartan reduces brain injury in a combined model of diabetes and cerebral ischemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference58 articles.

1. Effects of Glucose and Pa o 2 Modulation on Cortical Intracellular Acidosis, NADH Redox State, and Infarction in the Ischemic Penumbra

2. Asiedu-Gyekye IJ and Antwi DA. Does losartan prevent cerebral edema? A preliminary study using a vascular compartment model. Med Sci 9: BR127–BR130, 2003.

3. Monocyte NADPH Oxidase Subunit p22phoxand Inducible Hemeoxygenase-1 Gene Expressions Are Increased in Type II Diabetic Patients: Relationship with Oxidative Stress

4. Babior BM. NADPH oxidase: an update. Blood 93: 1464–1476, 1999.

5. Dual effect of HBO on cerebral infarction in MCAO rats

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3