Mechanism of prolonged electromechanical delay in late activated myocardium during left bundle branch block

Author:

Russell Kristoffer12,Smiseth Otto A.1,Gjesdal Ola1,Qvigstad Eirik3,Norseng Per Andreas4,Sjaastad Ivar4,Opdahl Anders1,Skulstad Helge1,Edvardsen Thor1,Remme Espen W.1

Affiliation:

1. Institute for Surgical Research and 1Department of Cardiology,

2. Medical Facility, University of Oslo, Oslo, Norway

3. Department of Pharmacology,

4. Institute for Experimental Medical Research, Oslo University Hospital, Oslo; and

Abstract

During left bundle branch block (LBBB), electromechanical delay (EMD), defined as time from regional electrical activation (REA) to onset shortening, is prolonged in the late-activated left ventricular lateral wall compared with the septum. This leads to greater mechanical relative to electrical dyssynchrony. The aim of this study was to determine the mechanism of the prolonged EMD. We investigated this phenomenon in an experimental LBBB dog model ( n = 7), in patients ( n = 9) with biventricular pacing devices, in an in vitro papillary muscle study ( n = 6), and a mathematical simulation model. Pressures, myocardial deformation, and REA were assessed. In the dogs, there was a greater mechanical than electrical delay (82 ± 12 vs. 54 ± 8 ms, P = 0.002) due to prolonged EMD in the lateral wall vs. septum (39 ± 8 vs.11 ± 9 ms, P = 0.002). The prolonged EMD in later activated myocardium could not be explained by increased excitation-contraction coupling time or increased pressure at the time of REA but was strongly related to dP/d t at the time of REA ( r = 0.88). Results in humans were consistent with experimental findings. The papillary muscle study and mathematical model showed that EMD was prolonged at higher dP/d t because it took longer for the segment to generate active force at a rate superior to the load rise, which is a requirement for shortening. We conclude that, during LBBB, prolonged EMD in late-activated myocardium is caused by a higher dP/d t at the time of activation, resulting in aggravated mechanical relative to electrical dyssynchrony. These findings suggest that LV contractility may modify mechanical dyssynchrony.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3