Continuous and less invasive central hemodynamic monitoring by blood pressure waveform analysis

Author:

Mukkamala Ramakrishna1,Xu Da1

Affiliation:

1. Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan

Abstract

Blood pressure waveform analysis may permit continuous (i.e., automated) and less invasive (i.e., safer and simpler) central hemodynamic monitoring in the intensive care unit and other clinical settings without requiring any instrumentation beyond what is already in use or available. This practical approach has been a topic of intense investigation for decades and may garner even more interest henceforth due to the evolving demographics as well as recent trends in clinical hemodynamic monitoring. Here, we review techniques that have appeared in the literature for mathematically estimating clinically significant central hemodynamic variables, such as cardiac output, from different blood pressure waveforms. We begin by providing the rationale for pursuing such techniques. We then summarize earlier techniques and thereafter overview recent techniques by our collaborators and us in greater depth while pinpointing both their strengths and weaknesses. We conclude with suggestions for future research directions in the field and a description of some potential clinical applications of the techniques.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3