PPARα augments heart function and cardiac fatty acid oxidation in early experimental polymicrobial sepsis

Author:

Standage Stephen W.12,Bennion Brock G.12,Knowles Taft O.12,Ledee Dolena R.34,Portman Michael A.34,McGuire John K.12,Liles W. Conrad15,Olson Aaron K.34

Affiliation:

1. Center for Lung Biology, University of Washington School of Medicine, Seattle, Washington;

2. Department of Pediatrics (Critical Care Medicine), University of Washington School of Medicine, Seattle, Washington;

3. Department of Pediatrics (Cardiology), University of Washington School of Medicine, Seattle, Washington;

4. Seattle Children’s Research Institute, Seattle, Washington

5. Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and

Abstract

Children with sepsis and multisystem organ failure have downregulated leukocyte gene expression of peroxisome proliferator-activated receptor-α (PPARα), a nuclear hormone receptor transcription factor that regulates inflammation and lipid metabolism. Mouse models of sepsis have likewise demonstrated that the absence of PPARα is associated with decreased survival and organ injury, specifically of the heart. Using a clinically relevant mouse model of early sepsis, we found that heart function increases in wild-type (WT) mice over the first 24 h of sepsis, but that mice lacking PPARα ( Ppara−/−) cannot sustain the elevated heart function necessary to compensate for sepsis pathophysiology. Left ventricular shortening fraction, measured 24 h after initiation of sepsis by echocardiography, was higher in WT mice than in Ppara−/− mice. Ex vivo working heart studies demonstrated greater developed pressure, contractility, and aortic outflow in WT compared with Ppara−/− mice. Furthermore, cardiac fatty acid oxidation was increased in WT but not in Ppara−/− mice. Regulatory pathways controlling pyruvate incorporation into the citric acid cycle were inhibited by sepsis in both genotypes, but the regulatory state of enzymes controlling fatty acid oxidation appeared to be permissive in WT mice only. Mitochondrial ultrastructure was not altered in either genotype indicating that severe mitochondrial dysfunction is unlikely at this stage of sepsis. These data suggest that PPARα expression supports the hyperdynamic cardiac response early in the course of sepsis and that increased fatty acid oxidation may prevent morbidity and mortality. NEW & NOTEWORTHY In contrast to previous studies in septic shock using experimental mouse models, we are the first to demonstrate that heart function increases early in sepsis with an associated augmentation of cardiac fatty acid oxidation. Absence of peroxisome proliferator-activated receptor-α (PPARα) results in reduced cardiac performance and fatty acid oxidation in sepsis.

Funder

American Heart Association (AHA)

Seattle Children's Research Institute Center for Developmental Therapeutics

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3