Influence of long-term experimental orthostatic body position on innervation density in extremity vessels

Author:

Monos E.1,Lóránt M.1,Fehér E.2

Affiliation:

1. Experimental Research Department and Institute of Human Physiology, and

2. Faculty of Medicine, Department of Anatomy, Histology, and Embriology, Semmelweis University, 1082 Budapest, Hungary

Abstract

The aim of this study was to quantitate the density of nerve terminals as well as their synaptic vesicle population in the adventitia of saphenous (SV and SA) and brachial veins and arteries (BV and BA) obtained from rats maintained in a horizontal control or a tilted position. Adult animals were kept individually in tubelike cages in a 45° head-up position. After 2 wk, both tilted and control animals were anesthetized, and the whole body was perfused with fixative solution at physiological pressure. Vessels segments were then excised for electron microscopy and immunohistochemistry. The nerve terminal density (NTD) of SA was 8.20 ± 1.46 nerve terminals/100 μm2 cross section of adventitia and that of SV was 4.53 ± 0.61 nerve terminals/100 μm2 cross section of adventitia in control rats. Tilting caused a significant increase in NTD of both SA (70%) and SV (52%). The synaptic microvesicle density (SyVD) was larger in SA than SV in control rats (30.48 ± 4.41 vs. 13.38 ± 2.61 synaptic vesicles/10 terminal sections), but tilting resulted in more pronounced changes in SyVD of SV (95%) than SA (54%). No significant changes in NTD and SyVD of BA were found after tilt (−3.6% relative to 4.99 ± 0.33 compared with 0.4% relative to 24.89 ± 3.7, respectively). Whereas NTD of BV exhibited a tendency to increase (3.73 ± 0.86 vs. 2.31 ± 0.29 nerve terminals/100 μm2 cross section of adventitia), SyVD did not change significantly (18.96 ± 2.74 vs. 22.85 ± 3.17 synaptic vesicles/10 terminal sections). A large number of nerve terminals of all vessels were tyrosine hydroxylase immunoreactive (containing norepinephrine). These findings support the hypothesis that long-term gravitational load causes adaptive morphological and functional remodeling of sympathetic innervation in blood vessels of the extremities.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3