Effects of hypoxia on relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in coronary arterial smooth muscle

Author:

Gao Qun,Wolin Michael S.

Abstract

Since controversy exists on how hypoxia influences vascular reactive oxygen species (ROS) generation, and our previous work provided evidence that it relaxes endothelium-denuded bovine coronary arteries (BCA) in a ROS-independent manner by promoting cytosolic NADPH oxidation, we examined how hypoxia alters relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in BCA. Methods were developed to image and interpret the effects of hypoxia on NAD(P)H redox based on its autofluorescence in the cytosolic, mitochondrial, and nuclear regions of smooth muscle cells isolated from BCA. Aspects of anaerobic glycolysis and cytosolic NADH redox in BCA were assessed from measurements of lactate and pyruvate. Imaging changes in mitosox and dehydroethidium fluorescence were used to detect changes in mitochondrial and cytosolic-nuclear superoxide, respectively. Hypoxia appeared to increase mitochondrial and decrease cytosolic-nuclear superoxide under conditions associated with increased cytosolic NADH (lactate/pyruvate), mitochondrial NAD(P)H, and hyperpolarization of mitochondria detected by tetramethylrhodamine methyl-ester perchlorate fluorescence. Rotenone appeared to increase mitochondrial NAD(P)H and superoxide, suggesting hypoxia could increase superoxide generation by complex I. However, hypoxia decreased mitochondrial superoxide in the presence of contraction to 30 mM KCl, associated with decreased mitochondrial NAD(P)H. Thus, while hypoxia augments NAD(P)H redox associated with increased mitochondrial superoxide, contraction with KCl reverses these effects of hypoxia on mitochondrial superoxide, suggesting mitochondrial ROS increases do not mediate hypoxic relaxation in BCA. Since hypoxia lowers pyruvate, and pyruvate inhibits hypoxia-elicited relaxation and NADPH oxidation in BCA, mitochondrial control of pyruvate metabolism associated with cytosolic NADPH redox regulation could contribute to sensing hypoxia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3