Endoplasmic reticulum stress inhibition blunts the development of essential hypertension in the spontaneously hypertensive rat

Author:

Naiel Safaa1,Carlisle Rachel E.1,Lu Chao1,Tat Victor1,Dickhout Jeffrey G.1

Affiliation:

1. Department of Medicine, Hamilton Centre for Kidney Research, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada

Abstract

Essential hypertension is the leading cause of premature death worldwide. However, hypertension’s cause remains uncertain. endoplasmic reticulum (ER) stress has recently been associated with hypertension, but it is unclear whether ER stress causes hypertension. To clarify this question, we examined if ER stress occurs in blood vessels before the development of hypertension and if ER stress inhibition would prevent hypertension development. We used the spontaneously hypertensive rat (SHR) as a model of human essential hypertension and the Wistar-Kyoto (WKY) rat as its normotensive control. Resistance arteries collected from young rats determined that ER stress was present in SHR vessels before the onset of hypertension. To assess the effect of ER stress inhibition on hypertension development, another subset of rats were treated with 4-phenylbutyric acid (4-PBA; 1 g·kg−1·day−1) for 8 wk from 5 wk of age. Blood pressure was measured via radiotelemetry and compared with untreated SHR and WKY rats. Mesenteric resistance arteries were collected and assessed for structural and functional changes associated with hypertension. Systolic and diastolic blood pressures were significantly lower in the 4-PBA-treated SHR groups than in untreated SHRs. Additionally, 4-PBA significantly decreased the media-to-lumen ratio and ER stress marker expression, improved vasodilatory response, and reduced contractile responses in resistance arteries from SHRs. Overall, ER stress inhibition blunted the development of hypertension in the SHR. These data add evidence to the hypothesis that a component of hypertension in the SHR is caused by ER stress. NEW & NOTEWORTHY In this study, 4-phenylbutyric acid’s (4-PBA’s) molecular chaperone capability was used to inhibit endoplasmic reticulum (ER) stress in the small arteries of young spontaneously hypertensive rats (SHRs) and reduce their hypertension. These effects are likely mediated through 4-PBA's effects to reduce resistant artery contractility and increase nitric oxide-mediated endothelial vasodilation through a process preventing endothelial dysfunction. Overall, ER stress inhibition blunted the development of hypertension in this young SHR model. This suggests that a component of the increase in blood pressure found in SHRs is due to ER stress. However, it is important to note that inhibition of ER stress was not able to fully restore the blood pressure to normal, suggesting that a component of hypertension may not be due to ER stress. This study points to the inhibition of ER stress as an important new physiological pathway to lower blood pressure, where other known approaches may not achieve blood pressure-lowering targets.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3