Exercise-induced shift in right ventricular contraction pattern: novel marker of athlete’s heart?

Author:

Lakatos Bálint Károly1,Kiss Orsolya1,Tokodi Márton1,Tősér Zoltán2,Sydó Nóra1,Merkely Gergő13,Babity Máté1,Szilágyi Mónika1,Komócsin Zsuzsanna1,Bognár Csaba1,Kovács Attila1,Merkely Béla1

Affiliation:

1. Semmelweis University Heart and Vascular Center, Budapest, Hungary

2. Argus Cognitive, Incorporated, Dover, Delaware

3. Department of Orthopaedics, Uzsoki Hospital, Budapest, Hungary

Abstract

Data about the functional adaptation of the right ventricle (RV) to intense exercise are limited. Our aim was to characterize the RV mechanical pattern in top-level athletes using three-dimensional echocardiography. A total of 60 elite water polo athletes (19 ± 4 yr, 17 ± 6 h of training/wk, 50% women and 50% men) and 40 healthy sedentary control subjects were enrolled. We measured the RV end-diastolic volume index (RVEDVi) and ejection fraction (RVEF) using dedicated software. Furthermore, we determined RV global longitudinal (RV GLS) and circumferential strain (RV GCS) and the relative contribution of longitudinal ejection fraction (LEF) and radial ejection fraction (REF) to RVEF using the ReVISION method. Athletes also underwent cardiopulmonary exercise testing [O2 consumption (V̇o2)/kg]. Athletes had significantly higher RVEDVi compared with control subjects (athletes vs. control subjects, 88 ± 11 vs. 65 ± 10 ml/m2, P < 0.001); however, they also demonstrated lower RVEF (56 ± 4% vs. 61 ± 5%, P < 0.001). RV GLS was comparable between the two groups (−22 ± 5% vs. −23 ± 5%, P = 0.24), whereas RV GCS was significantly lower in athletes (−21 ± 4% vs. −26 ± 7%, P < 0.001). Athletes had higher LEF and lower REF contribution to RVEF (LEF/RVEF: 0.50 ± 0.07 vs. 0.42 ± 0.07, P < 0.001; REF/RVEF: 0.33 ± 0.08 vs. 0.45 ± 0.08, P < 0.001). Moreover, the pattern of RV functional shift correlated with V̇o2/kg (LEF/RVEF: r = 0.30, P < 0.05; REF/RVEF: r = −0.27, P < 0.05). RV mechanical adaptation to long-term intense exercise implies a functional shift; the relative contribution of longitudinal motion to global function was increased, whereas the radial shortening was significantly decreased, in athletes. Moreover, this functional pattern correlates with aerobic exercise performance, representing a potential new resting marker of an athlete’s heart. NEW & NOTEWORTHY Intensive regular physical exercise results in significant changes of right ventricular morphology and function. By separate quantification of the right ventricular longitudinal and radial function, a relative dominance of longitudinal motion and a decrease in radial motion can be observed compared with sedentary controls. Moreover, this contraction pattern correlates with cardiopulmonary fitness. According to these results, this functional shift of the right ventricle may represent a novel marker of an athlete’s heart.

Funder

National Research, Development and Innovation Office NKFIH of Hungary

Hungarian Ministry of Human Capacities

Arrhythmia Research Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3