Ventricular untwisting: a temporal link between left ventricular relaxation and suction

Author:

Notomi Yuichi,Popović Zoran B.,Yamada Hirotsugu,Wallick Don W.,Martin Maureen G.,Oryszak Stephanie J.,Shiota Takahiro,Greenberg Neil L.,Thomas James D.

Abstract

Left ventricular (LV) untwisting starts early during the isovolumic relaxation phase and proceeds throughout the early filling phase, releasing elastic energy stored by the preceding systolic deformation. Data relating untwisting, relaxation, and intraventricular pressure gradients (IVPG), which represent another manifestation of elastic recoil, are sparse. To understand the interaction between LV mechanics and inflow during early diastole, Doppler tissue images (DTI), catheter-derived pressures (apical and basal LV, left atrial, and aortic), and LV volume data were obtained at baseline, during varying pacing modes, and during dobutamine and esmolol infusion in seven closed-chest anesthetized dogs. LV torsion and torsional rate profiles were analyzed from DTI data sets (apical and basal short-axis images) with high temporal resolution (6.5 ± 0.7 ms). Repeated-measures regression models showed moderately strong correlation of peak LV twisting with peak LV untwisting rate ( r = 0.74), as well as correlations of peak LV untwisting rate with the time constant of LV pressure decay (tau, r = −0.66) and IVPG ( r = 0.76, P < 0.0001 for all). In a multivariate analysis, peak LV untwisting rate was an independent predictor of tau and IVPG ( P < 0.0001, for both). The start of LV untwisting coincided with the beginning of relaxation and preceded suction-aided filling resulting from elastic recoil. Untwisting rate may be a useful marker of diastolic function or even serve as a therapeutic target for improving diastolic function.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 258 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3