Contribution of anaerobic metabolism to reactive hyperemia in skeletal muscle

Author:

Tóth András,Pal Miklos,Intaglietta Marcos,Johnson Paul C.

Abstract

Elevated blood flow (reactive hyperemia) is seen in many organs after a period of blood flow stoppage. This hyperemia is often considered to be due in part to a shift to anaerobic metabolism during tissue hypoxia. The aim of our study was to test this hypothesis in skeletal muscle. For this purpose we measured NADH fluorescence at localized tissue areas in cat sartorius muscle during and after arterial occlusions of 5–300 s. In parallel studies, red blood cell (RBC) velocity was measured in venules. Tissue NADH fluorescence rose significantly with occlusions of 45 s or greater, reaching a maximum of 44% above control at 180 s. Peak RBC velocity rose to four times control as occlusion duration was increased from 5 to 45 s, but hyperemia duration was stable at ∼70 s. With occlusions of 45–240 s, hyperemia duration increased progressively to 210 s while peak flow was unchanged. However, after 300-s occlusions, peak flow rose to six times above control and hyperemia duration fell to 140 s. With occlusions of 45–300 s the time integral both of increased NADH fluorescence and of reduced fluorescence following occlusion release showed a high degree of correlation with the additional hyperemia. We conclude that in this muscle anaerobic vasodilator metabolites are responsible for the increase in reactive hyperemia with arterial occlusions longer than 45 s. Since the durations of reactive hyperemia and reduced fluorescence are substantially different, vasodilator metabolite removal may be due to washout by the bloodstream rather than metabolic uptake.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3