Cardiac contraction affects deep myocardial vessels predominantly

Author:

Goto M.1,Flynn A. E.1,Doucette J. W.1,Jansen C. M.1,Stork M. M.1,Coggins D. L.1,Muehrcke D. D.1,Husseini W. K.1,Hoffman J. I.1

Affiliation:

1. Cardiovascular Research Institute, University of California, SanFrancisco 94143.

Abstract

To evaluate the roles of intramyocardial forces and systolic ventricular pressure in myocardial flow in the different layers separately, we measured myocardial flow in rabbit hearts during stable systolic contracture with left ventricular pressures of 60 (n = 5) and 0 mmHg (n = 5) and during stable diastolic arrest (n = 5). We also measured the number and size of the intramyocardial vessels after perfusion fixation (systolic arrest, n = 5; diastolic arrest, n = 5). In 25 rabbits, hearts were excised and perfused from the aortic root. Systolic arrest was achieved by perfusion of a low-Ca2+ Tyrode solution containing 2.0 mM Ba2+. Diastolic arrest was achieved by intraventricular injection of 700-1,000 mg pentobarbital sodium and was maintained by perfusion with St. Thomas cardioplegic solution. At perfusion pressure of 100 mmHg, subendocardial flow was lower than subepicardial flow during systolic arrest regardless of left ventricular pressure, whereas during diastolic arrest, subendocardial flow was higher than subepicardial flow. Subendocardial-to-subepicardial flow ratios for a physiological range of perfusion pressures were lower during systolic arrest with low rather than with high left ventricular pressure. Small arteriolar and capillary densities showed no difference between subendocardium and subepicardium. During systolic arrest, diameters of subendocardial terminal arterioles (4.6 +/- 1.3 microns) and capillaries (4.0 +/- 1.3 microns) were smaller than those in the subepicardium (8.8 +/- 1.7 and 7.1 +/- 1.6 microns, respectively; P less than 0.0001), whereas during diastolic arrest, diameters of subendocardial terminal arterioles (10.1 +/- 2.0 microns) and capillaries (7.6 +/- 1.8 microns) were slightly larger than those in the subepicardium (9.5 +/- 1.5 and 6.7 +/- 1.0 microns, respectively; P less than 0.01). We conclude that cardiac contraction predominantly affects subendocardial vessels and impedes subendocardial flow more than subepicardial flow regardless of left ventricular pressure.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanobiology;Coronary Circulation;2024

2. Biomechanical Homeostasis;Coronary Circulation;2024

3. The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart;Scientific Reports;2021-06-29

4. Coronary remodeling and biomechanics: Are we going with the flow in 2020?;American Journal of Physiology-Heart and Circulatory Physiology;2021-02-01

5. Coronary Microcirculation in Aortic Stenosis;Circulation: Cardiovascular Interventions;2019-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3