Left ventricular mechanical adaptation to chronic aortic regurgitation in intact dogs

Author:

Florenzano F.,Glantz S. A.

Abstract

Increased end-diastolic wall stress has been hypothesized to stimulate left ventricular (LV) hypertrophy following volume overload. We instrumented intact-chest dogs with radiopaque markers in both ventricles and created volume overload by puncturing one aortic valve cusp. End-diastolic stress increased immediately, then fell over 3 mo as the heart hypertrophied. End-systolic stress did not change significantly. Chamber contractility, quantified as Emax, the end-systolic pressure-volume line slope, increased. Emax normalized by multiplying by LV mass increased following the lesion before but not after beta-blockade with propranolol and did not change significantly over time, suggesting that chamber contractility changed because of increased mass and sympathetic tone rather than changed intrinsic muscle function. LV mass did not initially correlate with lesion size, but steady-state mass did. Over the range of lesions we produced, increased end-diastolic wall stress appears to stimulate hypertrophy at a fixed rate, which stops when end-diastolic wall stress has been reduced to an acceptable level.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3