Opioids and nitric oxide contribute to hypoxia-induced pial arterial vasodilation in newborn pigs

Author:

Armstead W. M.1

Affiliation:

1. Department of Anesthesia and Pharmacology, University of Pennsylvania, Philadelphia.

Abstract

The present study was designed to investigate the contribution of opioids and nitric oxide (NO) to hypoxia-induced pial vasodilation. Newborn pigs equipped with a closed cranial window were used to measure pial arteriolar diameter and to collect cortical periarachnoid cerebrospinal fluid (CSF) for assay of opioids and guanosine 3',5'-cyclic monophosphate (cGMP). Hypoxia-induced pial dilation was potentiated by norbinaltorphimine, 10(-6) M, a kappa-opioid antagonist (25 +/- 2 vs. 33 +/- 3%, n = 5), but was blunted by beta-funaltrexamine, 10(-8) M, a mu-opioid antagonist (28 +/- 2 vs. 19 +/- 1%, n = 5). Hypoxia-induced vasodilation was associated with increased CSF methionine enkephalin, a mu-opioid agonist (884 +/- 29 vs. 2,638 +/- 387 pg/ml, n = 5). N omega-nitro-L-arginine (L-NNA), an NO synthase inhibitor (10(-6) M), also blunted hypoxia-induced vasodilation that was further diminished by coadministration of L-NNA and beta-funaltrexamine (26 +/- 2, 14 +/- 1, and 9 +/- 1%, respectively, n = 5). Reversal of the above order of antagonist administration resulted in similar inhibition of hypoxia-induced pial dilation. Hypoxia-induced vasodilation was also associated with an increase in CSF cGMP that was attenuated by L-NNA (2.1 +/- 0.1- vs. 1.1 +/- 0.2-fold change in CSF cGMP, n = 5). Sodium nitroprusside (10(-6) M) increased CSF cGMP and methionine enkephalin concentration similar to hypoxia. These data suggest that hypoxia-induced pial arterial vasodilation, in part, is due to NO and/or cGMP-induced methionine enkephalin release as well as the direct action of NO.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3