Alternations in liver hemodynamics in an intact porcine model of endotoxin shock

Author:

Ayuse T.1,Brienza N.1,Revelly J. P.1,O'Donnell C. P.1,Boitnott J. K.1,Robotham J. L.1

Affiliation:

1. Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287.

Abstract

Septic shock decreases preload, increases splanchnic blood pooling and edema formation, and induces hepatic dysfunction. We hypothesized that the hemodynamic effects of endotoxemic shock on the portal venous (PV) and hepatic arterial (HA) vascular beds contribute to this picture. Multipoint pressure-flow relationships were generated to evaluate the slope (resistance or conductance) and effective back pressure (Pback) in each bed in an intact porcine model of endotoxemia. Slope and Pback were determined during endotoxemia over 300 min (n = 8) and compared with sham-treated control studies (n = 5). At time (t) = 60 min, HA slope significantly decreased (P < 0.05) without a change in Pback. The HA buffer response (HABR), defined as a decrease in HA resistance produced by reduction in PV flow (Qpv), was abolished at t = 90 min. The PV Pback significantly increased without a change in PV slope. At t = 300 min, HA slope returned to baseline, and the HABR was present while PV slope and Pback increased (P < 0.05). Fractional flow (flow relative to cardiac output) was constant except for a transient increase in HA fractional flow at t = 60 min. Histological studies showed focal necrosis and hemorrhage without evidence of vasoconstriction or thrombosis. In conclusion, endotoxic shock leads to time-dependent impairment of Qpv with increased PV resistance, causing an increase in splanchnic blood pooling and subsequent decrease in venous return. The HA bed is dilated early with an absent HABR. Later an HABR is present but defined by increased HA resistance for a given Qpv.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3