Measurement of myofilament calcium sensitivity at physiological temperature in intact cardiac trabeculae

Author:

Varian Kenneth D.,Raman Sripriya,Janssen Paul M. L.

Abstract

Cardiac contraction-relaxation coupling is determined by both the free intracellular calcium concentration ([Ca2+]i) and myofilament properties. We set out to develop a technique where we could assess these parameters (twitch and steady-state force [Ca2+]i) under near physiological conditions. Bis-fura-2 was iontophorically introduced into ultrathin rat trabeculae preparations to monitor the [Ca2+]i, and steady-state contractures were achieved by using a modified Krebs-Henseleit solution containing high K+. During K+ contractures, the very slow changes in [Ca2+]i and force development were in equilibrium and allowed for the construction of a steady-state, force-[Ca2+]i relationship. Twitch contractions before and after this myofilament calcium sensitivity assessment were unaltered, and this protocol could be repeated several times. For the first time, this novel protocol allows us to measure myofilament calcium sensitivity under physiological temperature. Not only do the data so obtained allow us to assess myofilament calcium sensitivity, the data also will allow us, in the same preparation under nearly identical conditions, to compare the dynamic to the steady-state, force-calcium relationship. To test whether the steady-state relationship between force and calcium in our novel protocol reproduces expected changes, we determined this relationship in the presence of isoproterenol and under acidosis and alkalosis. As expected, β-adrenergic stimulation resulted in an increase of calcium amplitude and twitch force and a desensitization of the myofilaments as indicated by a rightward shift of the obtained steady-state, force-calcium relationship. An increase in pH shifted the curve leftward, whereas a decrease in pH resulted in the expected rightward shift.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3