Affiliation:
1. Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
Abstract
The basement membrane (BM) surrounding capillaries in skeletal muscles varies physiologically in thickness according to age, physical fitness, and anatomical site in humans. Furthermore, the pericapillary BM thickness (CBMT) increases pathophysiologically during several common disease states, including peripheral arterial disease and diabetes mellitus. This review on CBM thickening in human skeletal muscles is two pronged. First, it addresses the advantages/disadvantages of grid- and tablet-based measuring and morphometric techniques that are implemented to assess the CBMT on transmission electron micrographs. Second, it deals with the biology of CBM thickening in skeletal muscles, particularly its possible causes, molecular mechanisms, and functional impact. CBM thickening is triggered by several physical factors, including diabetes-associated glycation, hydrostatic pressure, and inflammation. Increased biosynthesis of type IV collagen expression or repetitive cycles in pericyte or endothelial cell degeneration/proliferation appear to be most critical for CBM accumulation. A thickened CBM obviously poses a greater barrier for diffusion, lowers the microvascular elasticity, and impedes transcytosis of inflammatory cells. Our own morphometric data reveal the CBM enlargement to be not accompanied by the pericyte coverage. Owing to an overlap or redundancy in the capillary supply, CBM thickening in skeletal muscles might not be such a devastating occurrence as in organs with endarterial circulation (e.g., kidney and retina). CBM growth in skeletal muscles can be reversed by training or administration of antidiabetic drugs. In conclusion, CBM thickening in skeletal muscles is a microvascular remodeling process by which metabolic, hemodynamic, and inflammatory forces are integrated together and which could play a hitherto underestimated role in etiology/progression of human diseases.
Funder
Swiss National Science Foundation (Schweizerische Nationalfonds)
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献