Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction

Author:

Torres William M.12,Jacobs Julia2,Doviak Heather2,Barlow Shayne C.2,Zile Michael R.3,Shazly Tarek1,Spinale Francis G.12

Affiliation:

1. College of Engineering and Computing, University of South Carolina, Columbia, South Carolina

2. Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the William Jennings Bryan Dorn Veteran Affairs Medical Center, Columbia, South Carolina

3. Medical University of South Carolina and Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina

Abstract

The aim of the present study was to serially track how myocardial infarction (MI) impacts regional myocardial strain and mechanical properties of the left ventricle (LV) in a large animal model. Post-MI remodeling has distinct regional effects throughout the LV myocardium. Regional quantification of LV biomechanical behavior could help explain changes in global function and thus advance clinical assessment of post-MI remodeling. The present study is based on a porcine MI model to characterize LV biomechanics over 28 days post-MI via speckle-tracking echocardiography (STE). Regional myocardial strain and strain rate were recorded in the circumferential, radial, and longitudinal directions at baseline and at 3, 14, and 28 days post-MI. Regional myocardial wall stress was calculated using standard echocardiographic metrics of geometry and Doppler-derived hemodynamic measurements. Regional diastolic myocardial stiffness was calculated from the resultant stress-strain relations. Peak strain and phasic strain rates were nonuniformly reduced throughout the myocardium post-MI, whereas time to peak strain was increased to a similar degree in the MI region and border zone by 28 days post-MI. Elevations in diastolic myocardial stiffness in the MI region plateaued at 14 days post-MI, after which a significant reduction in MI regional stiffness in the longitudinal direction occurred between 14 and 28 days post-MI. Post-MI biomechanical changes in the LV myocardium were initially limited to the MI region but nonuniformly extended into the neighboring border zone and remote myocardium over 28 days post-MI. STE enabled quantification of regional and temporal differences in myocardial strain and diastolic stiffness, underscoring the potential of this technique for clinical assessment of post-MI remodeling. NEW & NOTEWORTHY For the first time, speckle-tracking echocardiography was used to serially track regional biomechanical behavior and mechanical properties postmyocardial infarction (post-MI). We found that changes initially confined to the MI region extended throughout the myocardium in a nonuniform fashion over 28 days post-MI. Speckle-tracking echocardiography-based evaluation of regional changes in left ventricular biomechanics could advance both clinical assessment of left ventricular remodeling and therapeutic strategies that target aberrant biomechanical behavior post-MI.

Funder

NIH

VA

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3