Surface association of pregnancy-associated plasma protein-A accounts for its colocalization with activated macrophages

Author:

Conover Cheryl A.,Harrington Sean C.,Bale Laurie K.,Oxvig Claus

Abstract

Intense immunostaining for pregnancy-associated plasma protein-A (PAPP-A), a newly characterized metalloproteinase in the insulin-like growth factor system, colocalizes with activated macrophages in human atherosclerotic plaque. To determine macrophage regulation of PAPP-A expression, we developed two models of human macrophages with basal and activated phenotypes. THP-1 cells and peripheral blood monocytes could be differentiated into macrophages and activated upon specific treatment regimens with phorbol myristate acetate, macrophage colony-stimulating factor, and interleukin-1β. Activation was assessed by cell secretion of tumor necrosis factor-α, which increased 30- to 100-fold with activation. Activated macrophages also secreted matrix metalloproteinase-9. However, no PAPP-A mRNA or PAPP-A antigen could be detected in these cells under any condition. Upon incubation with recombinant PAPP-A, we found that activated macrophages bound and internalized more PAPP-A than unactivated macrophages or monocytes. Internalization accounted for at least 50% of macrophage-associated PAPP-A, as assessed in studies with cytochalasin B. Membrane-bound PAPP-A retained protease activity, whereas internalized PAPP-A had little or no activity. Similar experiments carried out with a mutated variant of PAPP-A, which retains functionality as a protease but is unable to bind surface-associated glycosaminoglycan, showed no macrophage association or internalization. Absence of PAPP-A expression was confirmed in activated macrophages isolated from a hypercholesterolemic rabbit model of atherosclerosis. We therefore conclude that PAPP-A is not synthesized in, but rather is bound and internalized by, macrophages. Our findings likely account for the observed intense immunostaining for PAPP-A colocalizing with activated macrophages and may have physiological significance in the development of vulnerable plaque.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3