A microscope-television system for studying flow velocity in human skin capillaries

Author:

Fagrell B.,Fronek A.,Intaglietta M.

Abstract

A noninvasive technique for studying blood flow dynamics in human skin capillaries is described. A light microscope combined with a closed-circuit TV system was used to monitor and record capillary blood flow velocity on video tape. Arterial pulsations were recorded plethysmographically and converted into video signals by modulating the position of a square, white area in the televised scene. Twelve healthy subjects were studied. The mean (+/- SD) resting capillary blood flow velocity was 0.65 +/- 0.3 mm/s at an average skin temperature of 30.4 +/- 2.3 degrees C. Spontaneous fluctuations at a frequency of 6-10 cycles/min were observed in most subjects. A well-pronounced flow pulsatile component could be demonstrated in all capillaries studied. The technique can be used in clinical practice for studying the physiology and pathophysiology of cutaneous microcirculation in man. It can be expected that the method may become an important diagnostic tool in diseases that involve disturbances of the microcirculation, such as diabetes, hypertension, and atherosclerosis.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3